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Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated
system (Cas) is comprised of repetitive bases followed by short fragments of DNA from
a previously invading organism that provide immunity to the most prokaryotic organ-
isms. An RNA-dependent spacer is required for CRISPR/Cas9 to recognize the target
DNA. Delivery of the CRISPR/Cas9-guide RNA (gRNA) complex to any cell results in mod-
ification of the target sequence. The CRISPR/Cas9-mediated genome editing technique
is currently in the spotlight and has several research interests, including molecular med-
icine and agriculture. There are several factors that hinder the delivery of this complex,
such as the large size of the plasmid or high dosage of the chemical agent. There are
several methods available to deliver CRISPR/Cas9 and its components to the target cells.
It includes viral, non-viral and physical methods to deliver plasmid or ribonucleoprotein
(RNP) of CRISPR components. But in vivo CRISPR/Cas9 delivery remains challenging
to the researchers due to insertional mutagenesis, targeted delivery, immunogenicity,
and off-targets. However, studies suggesting that the CRISPR/Cas9-RNP delivery can
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overcome these hurdles. Here, we review the various methods for delivery of CRISPR/
Cas9 and gRNA to several cell lines, highlighting the limitations of each approach, and
suggest possible alternative methods.

1. INTRODUCTION

The growth of genome editing technologies involving zinc finger

nucleases (ZFNs), transcription activator-like effector nucleases (TALENs),

or clustered regularly interspaced short palindromic repeats (CRISPR)/

CRISPR-associated system (Cas) over a relatively short period has been rapid

in many fields of research. The notion of genome editing by engineering

nucleases has recently become popular. Site-specific alteration of the genome

has transformed science and holds great promise formolecularmedicine.Gen-

erally, genome editing indicates the insertion, deletion or replacement of a

gene in the living organism using engineered nucleases. For the past two

decades, researchers have used an array of proteins that recognize specific

DNA sequences in the genome to efficiently edit the DNA using nucleases

that result in DNA double-strand breaks (DSBs).1 This activates DNA repair

pathways including homologous recombination (HR) and non-homologous

end joining.2–4 Some of the important features of engineered nucleases are

given in Table 1.

1.1 Programmable Nucleases
The first class of programmable nuclease was ZFNs, which can bind to specific

target DNA through zinc finger proteins (ZFPs) (Fig. 1A). This 30-amino acid

structure has a type II restriction endonuclease domain called FokI that is used

to cleave the DNA. Due to the large number of ZFPs, the probability of

off-target binding is very high and leads to undesired mutations.17 A few years

after the discovery of ZFNs, the search for a better alternative to ZFNs led to

the introduction of TALENs. A typical TALEN involves fusion of a transcrip-

tion activator-like effector (TALE) and a DNA cleavage domain (FokI)

(Fig. 1B).8 This complex introduces site-specific cleavage upon delivery into

the cells. Initially, the wild-type FokI restriction enzyme was used to intro-

duce the cleavage; however, in subsequent studies, FokI domain variants with

mutations have also been employed to improve the cleavage activity18 and

specificity.19,20 After much research on ZFNs and TALENs, the CRISPR/

Cas9 system was introduced in the field of genome editing technology.
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Table 1 Significant Features of Engineered Nucleases

Type of Nuclease ZFN TALEN

CRISPR Variants

Cas9 Cpf1 C2c1 C2c2 Cas13b

DNA binding partner ZF proteins TALE proteins crRNA and

tracrRNA

crRNA crRNA and

tracrRNA

crRNA crRNA

Endonuclease FokI FokI Cas9 Cpf1 C2c1a C2c2a Cas13ba

PAM NA NA NGG TTTN TTN PFSb Flanking PFSb

Target length (nt) 18–36 30–40 20 23 20 28 30

Binding specificity ratio 1:3 1:1 1:1 1:1 1:1 1:1 1:1

Off-target effect High Low Inconsistent Low Low Low Unknown

Reference 5–7 8 9–11 12 13 14,15 16

aRNA-guided RNA editing nuclease.
bProtospacer flanking sequence.
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Originally, the CRISPR system is an adaptive immunity of bacteria and

archaea for protection against intrusive organisms.21 Subsequently, CRISPR

systems have been implemented in genome editing technology to target

a specific locus. Three types and 10 subtypes of CRISPR/Cas have

been suggested, and each type has core proteins and a definite module.22

Among all available types, Cas9, which belongs to type II, is the most widely

Fig. 1 Summary of genome editing tools. (A) Schematic representation of the ZFNs
targeting the DNAmolecule. Each individual right and left zinc finger domain targets each
codon of target DNA. A FokI enzyme is attached to the both zinc fingers to mediate the
site-specific cleavage. (B) Diagrammatic depiction of genome editing by TALENs. Similar
to ZFNs, here the individual TALE protein recognizes a specific nucleotide of the target
DNA and a FokI endonuclease is linked to TALE proteins for the cleavage. (C) Diagram
showing the CRISPR/Cas9-mediated genome editing. The Cas9 nuclease has two
domains, RuvC and HNH which is used to create the DSB. Here the Cas9 endonuclease
is guided by crRNA and tracrRNA to cleave the target site. The crRNA and tracrRNA
together called gRNA. (D) Illustration images of the DNA repair mechanisms after the
site-specific cleavage by ZFNs, TALENs or CRISPR/Cas9.
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studied for genome editing.23–25 CRISPR/Cas9 is easy to design and

manipulate and efficient for genome editing in a wide variety of organisms.9

Cas9 requires CRISPRRNA (crRNA) and trans-activating crRNA to direct

the nuclease for sequence-specific cleavage. A protospacer adjacent motif

(PAM) containing 2–5 nucleotides that are essential for targeting the DNA

(Fig. 1C).26

1.2 Genome Silencing vs Genome Editing
The genome editing technique involves the complete eradication of gene

expression and generation of DNADSBs that result in “knockout” of a par-

ticular gene. In contrast, “knockdown” of the gene of interest by RNA

interference (RNAi) or gene silencing methods is the most studied method

among eukaryotes. The concept of RNAi was discovered in the worm

Caenorhabditis elegans, a nematode in which the response to dsRNA results

in target-specific gene silencing.27 This novel research led to the concept

that a number of distinct homology-dependent gene silencing events might

share a general biological function. The mechanism behind this approach is

the production of exogenous short interfering RNAs or short hairpin RNAs

that are specific to the target gene. The resultant complex is handled by

Dicer, affecting the downregulation of gene expression.

Recently, catalytically deadCas9 (dCas9) was produced that does not con-

tain endonuclease activity. dCas9 was used for gene silencing in mammalian

cells via CRISPR interference (CRISPRi) and inE. coli.28 The differentiation

conditions of human pluripotent stem cells (hPSCs) can be regulated by dCas9

to study its pathway.29,30 The main advantages of CRISPRi are the ability to

target multiple genes and fewer off-target effects. Both knockdown and

knockout approaches are essential and based on the research application.

1.3 Advantages of CRISPR Over ZFN and TALEN
The CRISPR/Cas9 system is a powerful technique that has been utilized in

stem cells, knockout strategies,31 generation of engineered animal models,32

and cancer modeling.33 The implications of using the CRISPR/Cas9 tech-

nique to edit the genome are relevant to several essential strategies including

the development of antiviral therapies, restoration of unfavorable mutations,

and model systems. Recently, the essential characteristics of mouse and

human developmental lineage-restricted BCL11A gene were annotated

using pooled CRISPR/Cas9–gRNA. As a result, erythroid enhancer of

BCL11A was verified as a potential therapeutic target for the reinduction

of fetal hemoglobin.34

5CRISPR/Cas9 Delivery Methods

ARTICLE IN PRESS



The prerequisite for engineering of ZFNs and TALENs is the design of

proteins that target DNA molecules, followed by nuclease assembly. One

nuclease is used for right ZFN/TALEN and another for left ZFN/TALEN.

In contrast, the CRISPR method of editing the genome is based on a single

gRNAwithout the requirement for enzyme engineering. The Cas9 enzyme

remains the same for all targeting sequences, and only the gRNAs must be

customized. The highlight of the CRISPR/Cas9 system is the short gRNA

sequence of approximately 20 base pairs targeting the specific region of a

genome. Furthermore, gRNAs are easier and simpler to customize than

other nucleases. Because of the versatility and specificity of the CRISPR/

Cas9 system, laboratories with limited resources can utilize this technique

for a wide variety of applications. Also, the short length of gRNA makes

it more convenient to deliver to the target site than the high-MW ZFNs

and TALENs. Several questions have arisen among the scientific community

over the last few years, mainly regarding off-target activity and translation to

the clinic, for example: Does the enzyme cleave random site(s) other than

the target?What is the strategy for the CRISPR/Cas9 system to clear clinical

trials? To overcome the off-target effects, whole-genome sequencing and

deep sequencing strategies should be involved in the identification of off-

targets induced by genome editing. Such analyses are important for human

safety and to remove obstacles to clinical trials.

2. DELIVERY METHODS OF CRISPR/Cas9 FOR GENOME
EDITING

Currently, there are several methods for delivering CRISPR systems in

vivo and in vitro (Table 2). Both delivery vectors and physical methods are

widely implemented for the efficient delivery of CRISPR/Cas9-mediated

genome editing. Delivery vectors such as viral and non-viral vectors can

accommodate mRNA or plasmid expressing the nucleases to target cells or

tissues. Alternatively, physical methods including electroporation, laser, ballis-

tic delivery, physical energy, or microinjection can be exploited for the

delivery of nuclease into cells.43 Basically, non-viral vectors are preferable

because of the limitations of viral vectors such as carcinogenesis,44 limited

encapsulating capacity,45 and immunogenicity.46 Because of the low delivery

efficiency in vivo, only a limited number of non-viral vectors for gene therapy

have entered into clinical trials.47,48 In this context, we summarized methods

for delivery of CRISPR/Cas9 systems into cells (Fig. 2).

6 Arun Pandian Chandrasekaran et al.

ARTICLE IN PRESS



2.1 Viral-Mediated Delivery
Viral-mediated delivery is accomplished through twomechanisms: infection

and replication. During the infection stage, a virus can recognize and enter a

specific cell, and the viral genomewill be released into the nucleus (in case of

DNA) or cytoplasm (in case of RNA) for replication. After replication of the

viral genome in the cells, reproduced virions exit the cells. The infection

stage starts again in neighboring cells, and the infection–replication cycle

continues.49 The virus containing the delivery material (programmed

genome editing nuclease) is transported to the target cells and gene therapy

can be achieved by genome editing. A number of viral vectors have been

developed such as adenoviral vectors (AdVs), adeno-associated viral vectors

(AAVVs), and lentiviral vectors (LVs).

2.1.1 Adeno-Associated Viral Vector-Mediated Delivery
Delivery of Cas9 into different cell lines using an AAVV system has

been reported.50–52 A suitable guide RNA (gRNA) and SaCas9

Table 2 Summary of CRISPR/Cas9 Delivery Systems for Various Applications in Stem Cells
Delivery
Methods

Stem
Cells Target Gene(s) Applications Reference

Lentiviral

vector

hPSCs NF1, MED12, CUL3,

TADA1, and TADA2B

Gene knockout 35

Adeno-

associated

viral vector

hHSCs HBB Gene correction 36

Electroporation iPSCs HBB β-Thalassemia 37

RPGR Retinitis

pigmentosa

correction

38

hPSCs SH2B3 RBC production 39

AKT2, CELSR2,

CIITA, GLUT4,

LINC00116, and

SORT1

Comparative

study between

TALEN and

CRISPR

40

Nucleofection iPSCs CFTR Cystic fibrosis 41

hHSCs B2M and CCR5 Gene knockout 42
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(Cas9 from Streptococcus aureus) nuclease were successfully delivered to the

livers of adult mice using the AAVV-mediated delivery system,53 leading

to successful disruption of the Pcsk9 gene in mouse liver (40% disruption).

Furthermore, SpCas9 (Cas9 from Streptococcus pyogenes) was also delivered

and showed successful mutation of the Pcsk9 gene with a rate higher than

50%.54 Knockout of the Pcsk9 gene led to a low cholesterol level in the mice,

as PCSK9 protein is involved in LDL receptor degradation. In another study,

delivery of CRISPR/Cas9 through AAVVs was achieved with restoration of

functional deficiency of mouse muscle.55 The mRNA or cDNA of SaCas9

was encapsulated in either AAVV8 or AAVV9 for delivery into tibialis ante-

rior muscle of mdx mice for correction of Duchenne muscular dystrophy

(DMD).55–57 The mouse model mdx has a mutation in exon 23 which is

responsible for DMD. An AAVV-mediated delivery method was proposed

to treat DMD in the mouse model by employing CRISPR/Cas9-based

editing technique. SaCas9 was used for in vivo genome editing. On the other

hand, AAVV expressing sgRNAs were also prepared to target introns

22 and 23 to create deletion. These introns flanking to the exon 23 on both

the sides and thus the deletion of the two introns resulted in the complete

elimination of exon 23. Equal volume of Cas9 and sgRNAwere injected into

Fig. 2 Schematic representations of the different delivery methods for the successful
delivery of CRISPR/Cas9 and gRNA plasmids to the cells.
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the muscle of mdx mice and harvested after 8 weeks for analysis. End-point

PCR and droplet digital PCR showed the expected deleted region (approx.

1171 bp) and approximately 2% of all alleles showed exon 23 deletion.

Sanger and deep sequencing results further confirmed the deletion of exon

23. The results showed that muscle force was enriched and muscle bio-

chemistry was strongly improved. This research demonstrated the potential

of CRISPR/Cas9 delivery by AAVV as a prospective therapy to treat DMD.

The AAVV delivery system is commonly used for gene therapy due to its

long-lasting transgene expression, mild immune response, high infection

efficiency, and general safety and is now being tested in clinical trials.58

However, the limited packaging range of approximately 4.7 kb makes it

inappropriate for larger Cas9 variants.26,59 To overcome this limitation,

several distinct solutions have been proposed. Smaller orthologs of Cas9

(SaCas9) with a size of 3.3 kb have been bundled into a single AAVV,53

and another ortholog called Streptococcus thermophilus Cas9 (St1Cas9), which

was also 3.3 kb, was similarly packed into a single AAVV.60,61 Furthermore,

other studies employed the dual-AAVV system in which one AAVV delivers

SpCas9 and another delivers gRNA.62,63 The disadvantage of this system is

the reduced probability of delivering both viral vectors to the same cell,

which decreases the efficiency of delivery.

2.1.2 Lentiviral Vector-Mediated Delivery
The simultaneous delivery of both Cas9 and gRNA into the host cells can be

accomplished by lentiviral vectors. Here, a cell line expressing Cas9 is not a

prerequisite for the co-delivery of Cas9 and gRNA.35 Basically, LVs are ini-

tially acclimatized from HIV-1, which yields an extremely effective viral

vector due to its tropism, capability to infect post-mitotic cells, and larger

cargo capacity of 9.7 kb.64 Ex vivo gene therapy can also be achieved using

LVs, particularly in T cells (T lymphocytes) and hematopoietic stem cells

(HSCs). In a recent study, LVs were exploited to treat β-thalassemia and

Wiskott–Aldrich syndrome and for T-lymphocyte immunotherapy.65 Use

of integrase-deficient lentivirus vectors that have viral LTRs and integrase

mutations significantly decreases the risk of insertional mutagenesis, but does

not entirely eradicate the risk.66–68 Currently, various research groups are

utilizing LV-mediated delivery of gRNA and Cas9 to create knockout

libraries.35,69 These LVs can incorporate into the target genome without

changing its original form and express both gRNA and Cas9.

LVs have great potential for further applications in in vivo gene therapy.

Proof of concept of in vivo therapy using an LV-dependent system for the
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delivery of CRISPR–Cas9 system is now being developed. Recently, a pre-

packed LV-Cas9 protein system have been developed to edit CCR5 gene in

TZM-bl cells.70 Also, they designed a specific sgRNA targeting the long

terminal repeat of HIV to disrupt HIV proviral DNA in the J-LAT cells.

The CCR5 sgRNA displayed minimal off-target on chromosome 4. The

above evidence has further confirmed the efficiency of LV-mediated delivery

of Cas9 for safe access for gene therapy applications. In another study, dual LV

system was developed to get effective gene knockout in difficult to transfect

human and mouse cell lines and primary cell lines.71 This dual vector consists

of an inducible sgRNA cassette and a constitutive expression Cas9 vector

linked with mCherry. With the help of this system, they induced mutation

in Trp53 in primary HSPCs and resulted in the growth of lymphoma that

is driven by MYC. Thus, the combined action of dual LV and CRISPR/

Cas9 systems can be utilized for annotating novel mutations in tumor

suppressor genes and oncogenes that can accelerate tumor development.71

However, further analysis might require that the delivery of the substrates

and effector proteins is well balanced and timed. Nuclease-deficient Cas9

(dCas9) delivery can be employed, or non-integrating LVs can be used for

nuclease applications. Also, problems concerning the integration of Cas9 into

the target genome using LVs are not completely resolved.72

2.1.3 Adenovirus-Mediated Delivery
Adenoviridae is a family of adenoviruses that were isolated from human ade-

noid tissues in 1953. Generally, the concept of AdV-mediated delivery can

be used for in vivo and in vitro applications.73 Delivery of RNA-guided

nuclease into several cell lines was successfully accomplished.74 The

researchers investigated second-generation fiber-modified AdVs expressing

gRNA or the Cas9 component transduced into a recombinant allele or the

safe harbor gene called AAVS1 that can be generated to high titers.74

Although AdVs generate immune responses when transduced into hepato-

cytes, genome editing of somatic cells by AdVs can generate prolonged liver

phenotypes.75 The SpCas9 system was delivered by AdV to target the Pten

gene of mouse liver, and the genome editing efficiencies of AdVs and hydro-

dynamic injection-mediated delivery were compared. After 2 weeks of

treatment, the hydrodynamic injection-mediated delivery was less efficient

than AdVs. In addition, steatohepatitis and hepatomegaly were observed

after 4 weeks of AdV genome editing treatment.75
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2.2 Non-viral Vectors
Several non-viral vector systems have been developed and successfully

employed for safe delivery of CRISPR/Cas9 to cells. Noteworthy delivery

methods include polymeric materials, liposomes, cell-penetrating peptides

(CPPs), and cationic nanocarriers. The main advantages of non-viral vectors

are the capability to accommodate components of a large size for delivery, their

reduced or non-hazardous nature, and easy generation. For these reasons,

many scientists select this type of system for the delivery of nucleases.

2.2.1 Cationic Vectors
There are two broad categories of cationic based vectors: cationic polymer-

based and cationic lipid-based vectors. The probability of uptake of the

delivery components (Cas9 or gRNA plasmid) is high because of their

anionic nature. Thus, by nature, the cationic vectors are more suitable

and efficient for delivery of anionic gRNA or Cas9 to the cells. Effective

delivery of Cas9 was achieved using cationic polymer nanoparticles

(NPs).76 Polyethyleneimine (PEI) is a common cationic polymer that is used

for the delivery of CRISPR components. The molecular weight (MW), the

amount of branched or linear structure, and structural characteristics are sig-

nificant properties that determine the transfection efficiency and toxicity to

the cells. Also, the secondary amine present in the PEI helps to retain the

DNA in the cells.76 The stability of PEI is based on its high MW, high num-

ber of branched structures, and high cationic charge; however, it could cause

toxicity to cells. PEI-based delivery of Cas9 for in vivo targeting of tumor

suppressor genes (Pten, Trp53, Nf1) in mouse brain successfully caused gene

disruption.77

Cationic lipid-based vectors are also useful for the efficient delivery of

Cas9 and gRNA. For instance, gRNA and Cas9 ribonucleoprotein

(RNP) complexes were successfully delivered to mouse hair cells by cationic

liposomes, and 80% gene modification was achieved.78 The vectors were

injected into the inner ear rather than using the intravenous route, as injec-

tion is efficient and similar to the clinical technique. Another technique

for the delivery of CRISPR/Cas9 is by employing 7C1 NPs, which can

be produced by mixing low-MW PEI with C15 epoxide-terminated

lipids. This conglomeration method enhanced the mutation efficiency in

the cardiovascular and pulmonary endothelium and generated Cre-based

Cas9 mice.51
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2.2.2 Cell-Penetrating Peptides
Technical limitations such as susceptibility to enzymatic degradation,

anionic nature, and high MW make DNA delivery into target cells very

difficult. CPPs have several advantages and are proven to be successful in

delivering therapeutics against multiple diseases.79 CPPs carrying Cas9–
gRNA have been used for successful genome alteration in various cell types

(HeLa cells, dermal fibroblasts, human embryonic stem cells (hESCs),

HEK293T cells, and embryonic carcinoma cells) with low off-target activ-

ity. In one study, CPP was conjugated with gRNAs and recombinant Cas9

proteins to cause gene disruptions at the target site in human cells lines. This

approach has some advantages over other non-viral methods because of its

chemical reagent-free delivery and fewer off-target effects.80

2.2.3 Other Non-viral Methods
Several studies have involved CRISPR/Cas9 delivery using cationic NPs.

Recently, CRISPR/Cas9 was delivered by bioreducible lipid NPs with

70% genome efficiency.81 A hydrodynamic-based injection for the delivery

of gRNA–Cas9 complex to target cells was recently reported.82 Hydrody-

namic injections are high-volume injections that are delivered at high speed

into the vasculature for efficient delivery of Cas9 and gRNA plasmids and

have been used in many in vivo analyses targeting the liver.82,83 In this study,

a cancer model had been generated using CRISPR/Cas9 in mice. A plasmid

co-expressing Cas9 and sgRNA was injected to the liver by the hydrody-

namic injection. The plasmids target the tumor suppressor genes p53 and

Pten. The DNA sequencing results confirmed the biallelic mutations hap-

pened in both p53 and Pten.83 This data exhibits the possibility of direct

mutation of tumor suppressor genes in the liver using CRISPR/Cas9 that

explains the progress in liver cancer models and genomics. However, this

method is not extensively used because of possible damage to the heart

and liver.84

2.3 Physical Methods
There are several physical methods for delivery of Cas9 nuclease into

cells including microinjection and electroporation. Because of its target

specificity, high reproducibility, and simplicity, this approach is a promising

technology for gene therapy without the limitations associated with viral

vectors. Also, these methods can be readily applied to different cell lines

in vivo and in vitro.85 For direct delivery of the constructs to a target cell,

a needle with diameter ranging from 0.5 to 20 μM is generally inserted into
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the zebrafish86 and mosquito embryos.87 The overall experiment is aided by

a special microscope equipped with a micromanipulator.86–88 Alternatively,

electroporation generates pores on the cells and thus enables the plasmids to

enter the cells. Usually, the electroporator is used to produce electric pulses

to create pores.85,89–91 Efficient knockout of the SH2B3 gene in hESCs was

accomplished by co-transfection of Cas9 and gRNA plasmids. In this

knockout analysis, 25 μg of each plasmid was electroporated into hESCs.

The resultant suppression of the SH2B3 gene in hESCs enhanced erythroid

expansion and differentiation. Similarly, SH2B3 gene suppression in both

HSCs and pluripotent stem cells (PSCs) resulted in erythroid expansion.39

CRISPR/Cas9-based targeting of the cystic fibrosis (CF) gene (CTFR)

in patient-derived induced pluripotent stem cells (iPSCs) significantly

corrected the phenotype. The CRISPR/Cas9 plasmid, gRNA for CTFR,

GFP, and donor template were co-nucleofected into iPSCs from CF

patients. Consequently, the corrected iPSCs differentiated into epithelial

cells, and their function was analyzed.41

3. OPPORTUNITIES AND CHALLENGES IN CRISPR/Cas9
DELIVERY TO STEM CELLS

The improvement of target-specific nucleases as research tools paral-

lels recent developments in iPSCs. Reconsidering the Cas9 technique as an

engineered nuclease eliminates the barriers that restricted the prospects of

genome editing by offering a common platform. The main advantage of this

system over ZFNs and TALENs is that the DNA-targeting specificity is

determined by the gRNA and does not involve the arduous process of

designing DNA binding proteins. Thus, integrating the cellular adaptability

of iPSC differentiation with straightforward genome editing by the

CRISPR/Cas9 system is a powerful technique and has become a bench-

mark tool in stem cell research and disease modeling.92,93

An inducible cassette expressing Cas9 with gRNA was delivered to the

AAVS1 locus to enable the generation of isogenic hPSCs. Doxycycline was

used to induce the expression of Cas9.94 Here, iCRISPR (combination of

TALEN and CRISPR/Cas9) was developed for the efficient biallelic

knockout of hPSCs and for knock-in specific alternations in the nucleotide

to generate disease models in hPSCs. First, AAVS1-TALEN along with two

donor constructs were electroporated to the first intron of the AAVS1

in hESCs and hiPSCs cell lines. A high biallelic mutation was observed in

>50% of clones which was confirmed by Southern blot and qRT-PCR
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revealed the Cas9 expression after doxycycline induction to all iCas9 clones.

Furthermore, the pluripotency markers (NANOG, OCT2, and SOX2)

were expressed in iCas9 hPSCs and retained its stemness property. Alto-

gether, the iCRISPR can be used to study the pleiotropy in human disease

and to examine the complex genetic interactions. Also, it has the ability to

assist the high-throughput analysis in hPSCs. A loss-of-function study of

EZH2 was performed, and haploinsufficiency for EZH2 was revealed in

hematopoietic differentiation.95 Recently, effective delivery of CRISPR/

Cas9 into human hematopoietic stem and progenitor cells (HSPCs) was

accomplished by electroporation with chemically modified gRNA targeting

the cells.96 The chemical modifications include 20-O-methyl, 20-O-methyl

30 phosphorothioate, or 20-O-methyl 30 thioPACE were integrated at the

50 and 30 ends.96 Another recently published study described targeting the

HBB gene in HSPCs.36 HR-dependent genome editing in CD34+ HSPCs

from peripheral blood was performed using CRISPR/Cas9 ribonucleopro-

tein paired with recombinant AAVV serotype 6 (rAAVV6) donor. To attain

efficient gene editing, the chemically modified sgRNAs were co-transfected

with Cas9 RNP or mRNA. TheHBB-single-stranded AAVV6 (ssAAVV6)

was tagged with GFP to check the transfection efficiency. Both RNP and

mRNA resulted in high INDELwhen HSPCs was electroporated. After the

electroporation of Cas9 RNP, HBB-ssAAVV6 donor was introduced and

29% of stable GFP expression was obtained. On the other hand, mRNA

system showed lower efficiency (15%). Also, the off-target and cytotoxicity

were low for RNP platform. The above data revealed that CRISPR/

Cas9-based editing of theHBB gene inHSCs has the potential for translation

to clinical medicine.

4. CONCLUSIONS AND FUTURE PERSPECTIVES

Both non-viral and viral vectors have been implemented for the deliv-

ery of CRISPR/Cas9 for various applications. Non-viral vectors for the

delivery of CRISPR/Cas9 in the form of plasmid, mRNA or protein along

with gRNA has appeared as a potential delivery approach with intrinsic

strength and ability. On the other hand, Cas9 delivery approaches by viral

vectors have attained some level of in vivo therapeutic gene editing but

effective editing remains a challenge. The effective delivery of CRISPR

components to the target is the major challenge with respect to specificity

and efficacy. Depending on the nuclease expression and modes of delivery,

both immune response and off-targets are possible. Both non-viral and viral
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methods are being assessed for the delivery of CRISPR/Cas9 to cells in vivo

or ex vivo. On the basis of the evidences, the in vivo delivery of Cas9 via PEL,

CPP, AAV, and cationic liposomes are successful. Furthermore, hydrody-

namic injection has been applied to carry a large size of CRISPR/Cas9

plasmid into mouse hepatic tissue.82,83 On the other hand, physical methods

include microinjection and electroporation have succeeded in the uptake of

plasmids to the target. Additionally, a formulation consist of cationic surfactant

benzalkonium chloride and non-ionic poloxamer CRL 1005 has gone into

clinical trial phase II/III.97

The non-viral delivery of Cas9 plasmid or protein decreases off-targets

and immune response in vivo. Also, these vectors have lesser advantage over

viral vectors in various conditions specifically gene knock-in. However,

constant expression of CRISPR/Cas9 using viral vectors induces off-targets,

immune response and thus must be improved. In the near future, donor

template and sgRNAmay be prepared into viral vectors for constant expres-

sion and transient CRISPR/Cas9 can be introduced via non-viral and

administered for efficient DNA cleavage. Thus, the blending of multi-

administered non-viral vectors with viral vector will be the most favorable

method for molecular medicine based on CRISPR/Cas9 technology.
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